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Abstract Using ligand and receptor based virtual screening
approaches we have identified potential virtual screening
hits targeting type II dehydroquinase from Mycobacterium
tuberculosis, an effective and validated anti-mycobacterial
target. Initially, we applied a virtual screening workflow
based on a combination of 2D structural fingerprints, 3D
pharmacophore and molecular docking to identify com-
pounds that rigidly match specific aspects of ligand
bioactive conformation. Subsequently, the resulting com-
pounds were ranked and prioritized using receptor interac-
tion fingerprint based scoring and quantitative structure
activity relationship model developed using already known
actives. The virtual screening hits prioritized belong to
several classes of molecular scaffolds with several available
substitution positions that could allow chemical modifica-
tion to enhance binding affinity. Finally, identified hits may
be useful to a medicinal chemist or combinatorial chemist
to pick up the new molecular starting points for medicinal
chemistry optimization for the design of novel type II
dehydroquinase inhibitors.

Keywords Molecular docking .Molecular fingerprints . 3D
pharmacophore . QSAR . Type II dehydroquinase

Introduction

The shikimate pathway is the biosynthetic route to the
aromatic amino acids and other important aromatic metab-
olites in plants, bacteria, fungi, and apicomplexan parasites
[1–3]. The pathway is absent in mammals, making the
corresponding enzymes attractive targets for the develop-
ment of new herbicides and antimicrobial agents [1].
Dehydroquinase (3-dehydroquinate dehydratase, EC
4.2.1.10), the third enzyme of the shikimate pathway,
catalyses the conversion of 3-dehydroquinate to 3-
dehydroshikimate. There are two forms of dehydroquinase,
type I and type II, which appear to have arisen by
convergent evolution. These enzymes are structurally
distinct and catalyze the same overall transformation by
very different mechanisms [4]. The type I dehydroquinases
(for example, from Escherichia coli) are dimeric proteins
with a 26–28 kDa subunit catalyze the syn dehydration of
3-dehydroquinate through the initial formation of a Schiff
base with a conserved lysine residue [5, 6]. In contrast, type
II enzymes (for example, from Streptomyces coelicolor and
Mycobacterium tuberculosis) are dodecamers of 12–18 kDa
subunits and catalyze the anti elimination of water via an
enolate intermediate [7–9]. Since only type II dehydroqui-
nases are present in M. tuberculosis [10] therefore specific
inhibitors of this enzyme have therapeutic potential.

The elimination mechanism of the type II dehydroqui-
nases proceeds via an enol intermediate characterized by
ring-flattening due to the π-system formed between C2 and
C3 and by the increased H-bonding of the enol oxygen
formed, so the compounds that mimicked the enol interme-
diate were likely to show inhibitory properties. This feature
has been exploited for the design of the first generation of
inhibitors and was first studied by Abell et al., who reported
a number of analogues of 3-dehydroquinic acid as compet-
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itive reversible inhibitors of M. tuberculosis type II dehy-
droquinase [11–14]. 2, 3-Dehydroquinic acid was initially
designed to mimic the flattening of the ring in the enol
intermediate [11] and subsequently, in the search for more
accurate analogues, proton H3 of 2, 3-Dehydroquinic acid
was replaced by a fluorine atom in order to mimic the high
electron density generated at C3 during the course of the
reaction [12–14].

Co-crystallization of anhydroquinate analogue with S.
coelicolor type II dehydroquinase revealed a second
binding pocket adjacent to the active site which was
adventitiously occupied by a glycerol molecule from the
enzyme storage buffer [15]. This binding pocket is located
underneath a flexible loop, containing the catalytically
important tyrosine and arginine residues. The identification
of this second binding pocket inspired the design of
bifunctional compounds with a quinate core and side chains
from C-3 to reach into the second binding site [16–18].
Prazeres et al. showed that incorporation of aryl groups
bearing electron withdrawing substitutions in C-3 positions
of quinate core markedly increased the inhibitory potency
of this enol mimic against M. tuberculosis type II
dehydroquinase [19]. In fact these studies led to the
discovery of the most potent known inhibitor against any
type II dehydroquinase, the 3-nitrophenyl derivative with
Ki value of 54nM against M. tuberculosis type II
dehydroquinase [20]. Despite these and other known
inhibitors, more structurally diverse inhibitors of M.
tuberculosis type II dehydroquinase need to be discovered
for improving the understanding of the biological function
of M. tuberculosis type II dehydroquinase and to discover
its potential therapeutic indications.

The identification of new lead candidates is a crucial task
in the early phase of drug discovery. The general goal is to
select a small number of compounds with desired properties
(e.g., bioactivity against a drug target) from hypothetically
available screening compounds [21]. Chemical space is vast
−the number of synthetically accessible organic molecules
has been estimated to be in the range of 1060−10100 [22–
24]. It is evident that exhaustive screening of such a large
number of substances is by no means possible. Advances in
high-throughput screening (HTS) and parallel synthesis
since the early 1990s have provided a valuable tool for
standard pharmaceutical research, [25] and large compound
libraries can be synthesized in a combinatorial fashion and
screened with help of robotics [26]. HTS campaigns
demand a considerable financial effort and do not always
yield many validated hits [27–29]. Alternatively, computa-
tional approaches like similarity searches [30], pharmaco-
phore searching, [31] molecular docking, [32] QSAR
methods, [33] and de novo design [34] concentrate on
“cherry-picking” of selected compounds−often only tens to
hundreds−with predicted desired activity. A complementary

approach for computational lead identification is targeted
library design [35–37]. In this context, we have decided
that the sequential combination of ligand similarity,
pharmacophoric features, molecular docking strategies with
interaction fingerprints and QSAR in a single workflow
could be useful for this purpose. The fact that these
methods, when used individually, focus only on one part
of the structural information available has recently promp-
ted the development of hybrid ligand and receptor based
virtual screening methods. These hybrid methods aim at
fully exploiting all the structural information present in
ligand-bound protein structures, both from the protein
and ligand perspective. Although any single approach
either ligand based approaches like QSAR or 3D pharma-
cophore or structure based approach like molecular docking
can be used to design new compounds but better results can
be achieved using the consensus of both ligand and
structure based design approaches. A good approach to
design a putative library targeting a particular protein might
be to combine 3D pharmacophore, molecular docking and
scoring with QSAR by taking the top results identified
separately by the different methods. Such a combined
approach uses ligand-based methods to identify compounds
with features important for the target property. Structure-
based techniques are used to ensure that the shape, size and
energetic interaction potential of the putative ligands
complement that of the target protein. In principle, a
strategy combining 2D and 3D ligand similarity and
structural information of protein should provide more
accurate prediction about ligand binding modes. The
integrated ligand and receptor based approach has been
successfully used by our group for the identification of M.
tuberculosis Thymidine monophosphate kinase inhibitors
as novel antitubercular lead compounds [36]. Therefore,
here in this study iterative search strategies are employed to
perform “smart” sampling of screening compounds that
incorporate as much available knowledge about the target
of interest as possible, in an effort to make lead discovery
more productive, efficient, and cost-effective. The result of
targeted library design is a small molecular library enriched
with desired compounds that are focused toward a specific
biological target and may be useful to a medicinal chemist
or combinatorial chemist to pick up the new molecular
scaffolds for medicinal chemistry optimization for the
design of novel inhibitors.

The aim of our study was to screen a possibly diverse set
of small molecular structures, in order to obtain scaffolds
capable of fitting into M. tuberculosis type II dehydroqui-
nase active site. The resulting candidates for novel com-
pounds should hopefully benefit from specificity provided
by the quinate derivatives as well as affinity resulting from
reproducing the key interactions. We performed sequential
virtual screening by means of a 2D similarity search, 3D
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pharmacophore search and virtual screening hit prioritiza-
tion using molecular docking, and quantitative structure
activity relationship. Such a method allows combining
receptor-based and ligand-based approaches, thus utilizing
most of the currently available structural data. The novelty
of this approach lies in the sequential combination of ligand
(2D similarity and 3D pharmacophore) and structure based
(molecular docking and interaction fingerprints) virtual
screening facilitated through the prediction of hit com-
pounds activities using quantitative structure activity
relationship for screening against the type II dehydroqui-
nase from M. tuberculosis. Another important feature of
this computational approach is the enhancement of its
predictive power by incorporating an exhaustive consensus
scoring process using a rank-by-rank strategy in order to
provide a list of suitable compounds to be considered for
bioscreening. Our results show that ligand-based and
structure-based approaches can be used to discriminate
actives from inactives in a retrospective virtual analysis. We
believe that these approaches can be integrated in prospec-
tive virtual analysis to select candidates for the rational
design of M. tuberculosis type II dehydroquinase inhibitors.

Materials and methods

Dataset

A total of 45 M. tuberculosis type II dehydroquinase
inhibitors and their affinities were collected from the
literature [19, 20, 38–40], given as Ki values (Table 1). To
evaluate the performance of ligand and receptor based
virtual screening; presumably inactive compounds or
decoys (500 in number) were prepared from Maybridge
small molecule database using the method described by
Huang et al. [41]. We have used similarity and physical
property analysis to ensure that decoys have similar
physical properties (e.g., molecular weight, number of
hydrogen bond donors/acceptors, number of rotatable
bonds and LogP) to the actives. The ratio of active to
inactive compounds was 1:10 which is in the range of ratios
chosen in similar studies, e.g., a ratio of 1:17 was chosen by
Venhorst et al. [42] and a ratio of 1:19 was chosen by Evers
et al. [43]. As such, this data is expected to allow a bias-free
assessment of virtual screening methods. Noteworthy, these
molecules were only assumed to be inactive with no
experimental evidence that there is no cross reactivity with
M. tuberculosis type II dehydroquinase.

2D fingerprint based similarity search

The 2D similarity searches were performed with the
software MOE [44] using two-point (typed graph distances

(TGD)) and three-point (typed graph triangles (TGT)
pharmacophore-based fingerprints, all calculated from a
2D molecular graph. Each atom was given a type among
donor, acceptor, polar, anion, cation, or hydrophobe for the
calculation of TGD and TGT. Subsequently, pairs (two-
point fingerprint) or triplets (three-point fingerprints) of
types were formed by graph distances and coded as sparse
features in a fingerprint. The Tanimoto coefficient was used
as the similarity metric [45]. The Tanimoto coefficient
between two molecules described by a 2D fingerprint is
calculated using the following expression:

Tab ¼ c

aþ b� c
ð1Þ

where “c” is the number of bits common to the two
molecules, and “a” and “b” denote the number of bits set in
each of the two fingerprints.

3D Pharmacophore search

A 3D pharmacophore query was defined on the basis of the
structural features of the potent M. tuberculosis Type II
dehydroquinase inhibitor 3-nitrophenyl derivative of quinic
acid (Compound 28 in Table 1), by using the putative bound
conformation of the ligand derived from the docking. The
3D pharmacophore search was performed by using the Unity
flexible search protocol as implemented in Sybyl 7.1, with
all options set as default [46]. In the Unity search, the
conformations of the screening database were generated on
the fly by means of the Directed Tweak method [47].

Molecular docking and scoring

The hits obtained from 3D pharmacophore search were
docked into Type II dehydroquinase binding pocket in
complex with inhibitor (PDB entry code 1H0R) using the
FlexX program interfaced with Sybyl7.1 [46]. Standard
parameters of the FlexX program as implemented in
SYBYL7.1 were used during docking. To further evaluate
the docking results, the G_Score [48], PMF_Score [49],
D_Score [50] and ChemScore [51] values were estimated
using the CScore module of Sybyl7.1 [46]. As CScore is a
consensus scoring function, the different scoring functions
in it provide multiple approaches to evaluate ligand–
receptor interactions and such different scores are expected
to better aid in prioritization.

Receptor interaction fingerprints

Receptor interaction fingerprints were generated using the
method developed by Rognan et al. [52] from docked poses
of the virtual screening hits and active site coordinates
taking 3-nitrophenyl derivative of quinic acid (Compound
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28) as reference ligand using a C++ library and executables
available from http://bioinfo-pharma.u-strasbg.fr. In the
present work, only the first seven bits (Hydrophobic
interactions, aromatic face to face, aromatic face to edge,

hydrogen bond acceptor, hydrogen bond donor, positively
charged and negatively charged) which correspond to the
most frequent protein-ligand interactions are calculated.
The distance between two interaction fingerprints was

Table 1 Structure, biological activities and predicted activities of M. tuberculosis Type II dehydroquinase inhibitors

HO COOH

OH

OHR

Compound. 
No. R  -logKi pKi Compound 

Ref. No. 
1 200 3.699 3.541 19 
2

H
F 10 5.00 5.080 19 

3 

O2N

6.5 5.187 5.730 19 

4 

NO2

109 3.963 3.968 19 

5 1.2 5.921 5.827 19 

6* 

O

2.0 5.699 5.675 19 

7* 

S

2.85 5.545 5.327 19 

8 

O

0.97 6.013 6.207 19 

9 

S

0.85 6.071 5.633 19 

Ki(µM)
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calculated using a Tanimoto similarity coefficient (Tc) as
follows:

Tc ¼ A \ Bjj
A [ Bjj ð2Þ

where A ∩ B is the number of switched-on bits common to
fingerprints A and B and A ? B is the sum of switched-on
bits in fingerprints A and B.

Quantitative structure activity relationships

A total of 45 M. tuberculosis Type II dehydroquinase
inhibitors and their affinities reported by different groups

but evaluated under the similar conditions were collected
from the literature [19, 20, 38–40] and used in the present
study to derive and validate the GA-MLR QSAR models
using MOE Version 2007 [44]. The Ki values were
converted to the corresponding pKi (-log Ki) in which
higher values indicate exponentially greater potency. The
pKi values were then used as dependent variables in QSAR
analysis. A rationally designed training set of 35 molecules
was used for the derivation of the models and the test set of
10 molecules indicated by asterisk was used for their
validation (Table 1). The rational selection of 35 molecules
as the training set and 10 molecules as test set was
accomplished using the diverse subset tool of MOE using

Table 1 (continued)
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MACCS keys and Tanimoto similarity coefficient. Both 2D
and 3D molecular descriptors were calculated using MOE
Version 2007 [44]. 2D descriptors include physical proper-
ties, subdivided surface areas, atom counts and bond
counts, Kier and Hall connectivity [53–55] and kappa
shape indices; [56, 57] adjacency and distance matrix
descriptors, [58–62] pharmacophore feature descriptors,
and PEOE partial charge descriptors [63]. 3D molecular
descriptors include potential energy descriptors, surface
area, volume and shape descriptors, and conformation-

dependent charge descriptors [64]. Other descriptors in-
clude Lipinskii’s descriptors, Oprea descriptors, reactive
functional groups, Xu and Stevenson’s drug like index
descriptors, MACCS descriptors and E-state descriptors.
All of these descriptors were calculated using automated
MOE-SVL scripts.

Thereafter, genetic algorithm (GA) was employed to
search for the best possible QSAR regression equation
capable of correlating the variations in biological activities
of the training compounds with variations in the generated

Table 1 (continued)

18 
H
N

O
 

20 4.699 4.725 36 

19 
H
N

O

O

 

49 4.310 4.372 36 

20* 

H
N

O

8.7 5.060 5.434 36 

21 
H
N

O

0.91 6.041 5.775 36 

22 1.5 5.824 5.730 20 

23 

F

1.8 5.745 6.028 20 

24 

F3C

17 4.770 4.801 20 

25 

F

1.5 5.824 5.647 20 

26 

F3C

2.125 5.673 5.887 20 
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descriptors, i.e., multiple linear regression modeling
(MLR). The fitness function employed herein is based on
Friedman’s ‘lack-of-fit’ (LOF) [65]. The MLR method is a
simple and classical regression method, which can provide
explicit equations. In the current work, the models were
built using the simple MLR method with the selected

variables from GA, called GA-MLR. In the present studies
the genetic algorithm has been implemented through the
QuaSAR-Evolution algorithm provided in MOE. [The
QuaSAR-evolution script was downloaded from the SVL
exchange, http://svl.chemcomp.com.] This algorithm sup-
ports multiple fitness evaluation scores: the LOF, cross-

Table 1 (continued)

27 

HO

95 4.022 4.208 20 

28 

O2N

0.054 7.268 6.754 20 

29 

HOOC

150 3.824 3.828 20 

30 

F

F

2.44 5.613 5.587 20 

31* S 0.59 6.229 6.009 20 

32 

H
N

45 4.347 4.288 20 

33 O 0.83 6.081 6.154 20 

34 

H
N

O

27 4.569 4.257 37 

 35 
HOOC

105 3.979 4.011 37 

36* 

HO COOH

OH

OHHOOC

0.94 6.027 5.893 37 

37 

HO CONH2

OH

OHHOOC

16 4.796 4.716 37 
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Table 1 (continued)

38 

HO COOH

OH

OHO

13 4.886 4.704 38 

39 

HO COOH

OH

OHO

F

8 5.097 5.081 38 

40 

HO COOH

OH

OHO

Br

15 4.824 4.839 38 

41 

HO COOH

OH

OH

1200 2.921 3.005 38 

42* 

HO COOH

OH

OH

F

F

700 3.155 3.122 38 

43 

HO COOH

OH

OHHN

HO 20 4.699 4.812 20 

44 

HO COONa

OH

OHHN

HO 20 4.699 4.741 38 

45* 

HO COOH

OH

OH

700 3.155 3.127 38 

* Test Set Compounds 
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validated correlation coefficient (q2), correlation coefficient
r2 and the adjusted r2. Nevertheless, in view of the
superiority of the LOF fitness function in comparison to
the above listed functions, it was alone used for the
implementation of the GA.

Results and discussion

The general strategy for the ligand and structure based
virtual screening pursued in the present study is presented
in Fig. 1. In summary, using 2D structural fingerprints we
initially analyzed ZINC database [66] for similarity to a
highly active Type II dehydroquinase inhibitors (Com-
pound 13, 28 and 31 in Table 1). Subsequently, compounds
selected in this similarity search were subjected to 3D
pharmacophore search and then prioritized using molecular
docking and quantitative structure activity relationships.

Molecular fingerprint based similarity search analysis

Initially, a virtual library of ∼4 million commercially
available drug like compounds retrieved from the ZINC
database was reduced by eliminating compounds distant
from the three highly potent M. tuberculosis Type II
dehydroquinase inhibitors 13, 28 and 31 (Table 1) on the
basis of TGD and TGT 2D structural fingerprints. We
computed the structural similarities using a 2-point (TGD)
and a 3-point (TGT) pharmacophore-based fingerprint

using the Molecular Operating Environment (MOE) soft-
ware [44]. Subsequently, we calculated the Tanimoto
similarity coefficient (Tc) with compounds 13, 28 and 31.
To ensure that each individual search yielded good number
of compounds from the input database, we adjusted the Tc
to 60% for the TGD and TGT fingerprint for compounds
13, 28 and 31. The hits retrieved using similarity searches
were then merged and duplicates were removed that yielded
a library of 268186 unique compounds.

3D pharmacophore search

To retrieve novel and diverse scaffolds for the identification
of potential compounds targeting M. tuberculosis Type II
dehydroquinase we subjected the 268186 compounds
obtained in the 2D similarity analysis to a 3D pharmaco-
phore search using the Unity module of Sybyl 7.1 [46].
Bound conformation of highest active inhibitor 3-
nitrophenyl derivative of quinate (Compound 28) was used
for the generation of pharmacophore hypothesis. In order to
get putative bound conformation, we docked 3-nitrophenyl
derivative of quinate (Compound 28) to binding pocket
using FlexX. The purpose of molecular docking of highly
potent inhibitors was to identify the structural features in
context of their putative protein bound conformation as
well as provide information for the development of 3D-
pharmacophore model. Compound 28 adopted a similar
conformation in the binding site and established similar
contacts with the amino acid residues as the other crystal

Fig. 1 Scheme of the structure
based virtual screening protocol
for identification of M. tubercu-
losis Type II dehydroquinase
targeted virtual library. Initially,
ZINC database was subjected to
2D fingerprint similarity
searches based on the highly
active known inhibitors 13, 28
and 31 in Table 1. The threshold
of the Tanimoto coefficient (Tc)
for the search was fixed to 60%
to select good number of com-
pounds from the input database.
In the next step, resulting data-
base of compounds was sub-
jected to 3D pharmacophore
search and then to high-
throughput docking. In the final
step, selection of potent com-
pounds was done based on
receptor interaction fingerprint
based scoring quantitative struc-
ture activity relationship model
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structure ligands 2,3-anhydro-quinic acid and 3-
hydroxyimino quinic acid (PDB code 1H0R and 1H0S
respectively) (Fig. 2). We defined the 3D pharmacophore
on the basis of docked conformation using four hydrogen
bond acceptor features and a hydrophobic feature. The
hydrogen bond acceptor features represented in our
hypothesis form hydrogen bonding interactions with
Asn75, His81, Ile102, Ser103 and Arg112. The hydropho-
bic feature makes significant hydrophobic interactions with
Pro11, Leu13 and Tyr24. The pharmacophore hypothesis
was then used as a 3D structural query for further screening
of 268186 compounds obtained in molecular fingerprint
based similarity analysis using the Unity module of Sybyl
7.1 [46]. Pharmacophore based virtual screening yielded
4821 hits that met the specified requirements.

Molecular docking and scoring of the hits obtained
from 3D pharmacophore search

All the 4821 hit compounds retrieved from the pharmaco-
phore based screening were then subjected to molecular
docking to the Type II dehydroquinase inhibitor binding
site. M. Tuberculosis Type II dehydroquinase-FA6 binary
complex (PDB entry code: 1H0R) was used for docking
studies. The molecular docking was carried out using
FlexX program and 30 distinct poses of each ligand in the
active site was generated. FlexX successfully docked 4808
out of 4821 hits subjected to molecular docking and 30
distinct poses for each 4808 compounds were further
rescored using C-Score module of Sybyl7.1 to obtain
G_Score [48], PMF_Score [49], D_Score [50] and Chem-
Score [51] values so as to help in better hit prioritization. To

avoid any bias associated with individual scoring functions
[67], the five scores from each ligand pose were normalized
and combined to give an additional consensus score using
CScore module of Sybyl7.1. Combined scoring functions
perform in a superior fashion to the single scoring function
and by their nature the combination of functions will
ameliorate the effect of any particular unsuitable single
function. The ligand poses with best consensus scores for
each 4808 hits were then selected for further investigation.

A common problem in receptor based virtual screening is
that some compounds are ranked well by scoring functions
post-docking, although their respective pose is barely in the
binding site leading to false Enrichments [68]. Second, and
importantly, Warren et al. have recently observed, that from
an assessment of 35 scoring functions, none were able to
reliably identify the best-docked pose against a set of
different targets [69]. Obviously, this leads to difficulty in
prioritizing leads in a structure based virtual screen campaign
against a particular target. To overcome this pitfall, we
incorporated receptor knowledge based weighting approach
along with conventional FlexX scoring in our virtual
screening study to ensure that only realistic binders are
prioritized. The knowledge based scoring scheme presented
in this study is based on the incorporation of receptor−ligand
interaction information from reference ligand to the receptor,
i.e., validated docked conformation of highest active
compound, i.e., 3-nitrophenyl derivative of quinic acid
(compound 28). Patterns of interactions with the receptor
were modeled using binary ligand−receptor fingerprints
(IFP) as described in the Section Receptor interaction
fingerprints. Receptor interaction profile is used to filter out
compounds with docked binding modes that are not similar
to those observed in the docking predicted bound complex
of Type II dehydroquinase with Compound 28.

To ensure the ability of our scoring protocol where we
incorporated receptor knowledge based weighting approach
along with conventional FlexX scoring to discern true
positives, enrichment studies were carried out on a test
library consisting of known actives and decoys. Forty five
known actives with experimentally reported Ki were
collected from literature [19, 20, 38–40] and pooled with
500 decoys which were prepared in a fashion similar to the
DUD decoy set [41]. As, compound compilation used in a
test library can have profound effects on enrichment studies
therefore compounds having comparable physicochemical
properties to the known inhibitor were retrieved from the
Maybridge screening library using Euclidean distance as
similarity metric. This test library consisting of 545
compounds (45 actives and 500 decoys) was also subjected
to molecular docking to Type II dehydroquinase binding
site using the similar protocol. FlexX failed to find docking
solution for 22 decoys which resulted in net test screening
set of 523 compounds including 45 actives and 478 decoys.

Fig. 2 3D pharmacophore query generated based on the putative
bound conformation of Compound 28 (3-nitrophenyl derivative of
quinic acid)
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As an indicator of performance, the enrichment factor was
calculated as:

EF ¼ Known Bindersx%sampled

Nx%
sampled

� Ntotal

Known Binderstotal
ð3Þ

where Known Bindersx%sampled is the number of known binders
retrieved at x% of the database screened, Nx%

sampled is the
number of compounds screened at x% of the database,
known binderstotal is the number of known binders in the
entire database and Ntotal is the number of compounds in the
entire database. The enrichment plot (Fig. 3) shows a
comparison of the performance of five conventional scoring
function and receptor interaction fingerprint based scoring in
retrieving the known actives among the top ranking
compounds. It is clear that scoring functions behave quite
differently, reflecting their diverse approaches to quantifying
molecular interactions. As, the actual number of binders
among the screening set was not known so the enrichment
factors were calculated using 10, 20 and 50 % of the
database screened and are presented in Table 2. Using the
conventional scoring functions, the enrichment of known
binders among the top ranked molecules was poor while the

receptor interaction fingerprint based scoring perform in
superior fashion with enrichment factor values of 6.481,
3.576 and 1.609 for 10, 20 and 50% of the ranked database
(Table 2 and Fig. 3). This implies that receptor interaction
fingerprint based scoring is both effective and robust in its
ability to recognize compounds that are known to interact
with M. tuberculosis Type II dehydroquinase binding site
and suggest that similarly high ranking compounds may
display some affinity in vitro.

The design of new compounds should never be based on
one single approach. Although receptor interaction fingerprint
based scoring approach gave better result than the conven-
tional scoring functions in post processing the docking results
but better results can be achieved using the consensus of two
approaches. A good approach to design a library targeting a
particular protein might be to combine receptor interaction
fingerprint based scoring with the conventional scoring
functions by taking the top results identified separately by
the two methods. The selection of compounds is illustrated in
Fig. 4. As FlexX tries to determine the binding free energy,
hits which have a good FlexX score (−20 to −35 kJ mol−1)
with CScore value of 5, i.e., holds true for all five scoring
functions (Flexx_score, G_Score, PMF_Score, D_Score and
ChemScore) and good receptor interaction fingerprint score
were selected. A Tanimoto similarity score (Tc) of 0.6 was
taken as cutoff for the selection of compounds according to
receptor interaction fingerprint based scoring. Fifty nine
molecules were then selected for further investigation by
using conventional scoring functions and by similarity
searching the hits on the basis of reference inhibitor, using
receptor interaction fingerprints and applying a Tc threshold
value of 0.6.

Quantitative structure activity relationships models

The genetic algorithm multiple linear regression analysis
was employed to derive the QSAR model explaining the
inhibitory activities of Type II dehydroquinase inhibitors
using training set of 35 compounds and test set of 10
compounds selected rationally using the diverse subset tool
of MOE using MACCS keys and Tanimoto similarity
coefficient. The application of the genetic algorithm for
variable selection and subsequent development of multiple
linear regression model using all the default parameters
resulted in 13 descriptor model with non crossvalidated

Fig. 3 Enrichment curves obtained by docking the screening set
compounds consist of M. tuberculosis type II dehydroquinase actives
and decoys into binding site (PDB entry code 1H0S) using FlexX.
Selection and rank ordering of the docking solutions was performed
using receptor interaction fingerprint based scoring scheme (IFP) and
five conventional scoring functions (Flexx_Score, Chem_Score,
D_Score, G_Score and PMF_Score)

Scoring scheme

Flexx_Score Chem_Score D_Score G_Score PMF_Score IFP

10% 0.670 2.011 1.117 0.670 0.670 6.481

20% 0.782 1.676 0.894 0.894 0.894 3.576

50% 1.028 1.385 0.849 1.251 1.251 1.609

Table 2 Enrichment factors for
the top-scored 10, 20 and 50 %
of the ranked database
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correlation coefficient (r2) of 0.952 and Leave-one-out cross
validated correlation coefficient (q2) of 0.885. This model
also explained well the variance in the activities of the test
set with predictive correlation coefficient (rpred

2) of 0.982
and had good statistical significance (F-value=33.814). The
regression equation and the statistical items were as follows:

20:7338þ ð�2:43341� BCUTSLOGP1Þ þ ð�0:228062� DLI 10ð ÞÞ þ ð�21:3736
� GCUTSMR2Þþ ð0:0143473� PEOEVSAPOLÞ þ ð�0:0774612� PEOEVSAPPOS Þ
þð0:875022� PM3dipoleÞ þ ð�3:11956� QVSAFPOSÞ þ ð0:0355627
�SMRVSA6Þ þ ð�0:139282� bpolÞ þ ð�2:86432� dipoleÞ þ ð�8:6512
�globÞ þ ð�0:268099� kCssssCÞ þ ð�2:66804� petitjeanSCÞ

ð4Þ

r2 ¼ 0:952 rmse ¼ 0:2037 q2 ¼ 0:885 LOF

¼ 0:6275 F ¼ 33:814 r2pred ¼ 0:982: ð5Þ
The predicted activities and correlation between the predicted
activities and the experimental activities of the training and
test set compounds are depicted in Table 1 and Fig. 5.

Selection and binding mode of potential hits

Ligand based methods of analysis such as 3D-QSAR are
widely used not only because they are not very computa-
tionally intensive but also they can lead to rapid generation
of QSAR models from which the biological activity of new
compounds can be predicted. In contrast, an accurate

prediction of activity of untested compounds based on
the computation of binding free energy is both compli-
cated and lengthy. Overall, the GA-MLR results of the
training and test set demonstrated good accuracy of the
developed solutions, their useful synergy, and ability to
enrich for the most active target binders. These
observations encouraged us to apply developed GA-
MLR model to virtual screening hits identified using 2D
similarity, 3D pharmacophore and molecular docking
incorporating additional knowledge from receptor inter-
action fingerprints for the prediction of biological

Fig. 4 Receptor interaction fingerprint-based compound selection for
potential type II dehydroquinase binding compounds with compound
28 (3-nitropheny derivative of quinic acid) used as reference ligand for
compound selection. A Tanimoto similarity score of 0.6 and Flexx_-
Score of −20.00 kJ mol−1 taken as cutoff for the selection of

compounds. Black points represents total virtual screening hits
retrieved after 2D similarity and 3D pharmacophore search while red
and green points represents known actives and selected hits
respectively

Fig. 5 Correlation between experimental and GA-MLR predicted
activities of M. tuberculosis type II dehydroquinase inhibitors
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Table 3 Chemical structures of putative M.tuberculosis TypeII dehydroquinase binders and their respective docking scores, predicted activity,
molecular weight and LogP identified using virtual screening and QSAR

S.No.  Structure 
Flexx 
Score 

Mol. Wt LogP pKi 

1.  ZINC06677576 

NH

N
N

O

O

O

O

O

O

-23.64 419.48 0.86 11.125

2.  ZINC03552284 O

O

O
O

O

-21.88 282.25 3.39 10.734

3.  ZINC09318451 

N

N S

O

S

O

O

N

O

O

OH

-20.62 489.57 1.00 10.619

4.  ZINC05577070 

O

O

O

O

S

-20.01 378.45 5.67 9.947

5.  ZINC04484679 
N

H
NO

S

O

HN

S O

O

-27.16 355.44 0.74 9.917

6.  ZINC03264172 

OH

O

N

O

NH

O

-21.96 290.32 1.20 9.666

7.  ZINC06765153 
N

O

O

S

O

O

Cl

O

F

-24.06 415.87 3.27 9.472

8.  ZINC09490981 
N

O

S

NN

N
H

O

S
O

O

-25.56 472.59 2.97 9.292

9.  ZINC01786822 
OS

O

OS

O

O

Cl

O

-22.97 390.86 2.36 9.111

ZincID
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Table 3 (continued)

15.  ZINC05215425 

O

N

N

HN

HO

HO

O

-20.74 301.30 1.22 7.911

16.  ZINC02948647 N

NHN

O S

O

OH

OH

-26.97 385.44 2.65 7.786

17.  ZINC09630683 

O

N

N
N

S

O

N

HN

F

-22.13 431.54 3.88 7.719

18.  ZINC03624369 

OO

OH

O

OH

N

H
N OO

-20.30 350.33 -0.74 7.706

19.  ZINC00857312 

S

N

N

N

N

N

N

O

N

O

O
O

-27.37 389.40 -0.49 7.638

10.  ZINC05262611 

N
N

H
N

S

O

N

S

O

O

-23.09 402.50 2.62 9.107

11.  ZINC09514151 
N

N

S

O

N
H

S

O

O

N

O

Cl

H
N

-22.60 459.98 1.43 8.479

12.  ZINC02853073 
N

N

S

O

HN

H
N

O

O

O

-26.44 358.38 1.97 8.218

13.  ZINC00652050 
N

N

F

F

F

O

O

O

NO2

-34.20 395.29 1.98 8.138

14.  ZINC09173622 

S

N

S

N
F

F
F

ClOO

O

O

-23.66 472.94 2.50 7.958
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Table 3 (continued)

20.  ZINC03393572 

NH

O

NH

O
S

N
N

H
N

O

Cl

-26.26 411.91 3.41 7.560

21.  ZINC04871579 

O

S

S
N

N

S

O

-23.55 338.48 2.57 7.527

22.  ZINC09539647 
NH

O

O

O OH

S NH

-26.37 474.58 4.28 7.456

23.  ZINC04905087 
N

N

HO

O

O

OH

-26.20 312.32 2.39 7.426

24.  ZINC09514369 
O

O

H
NO

S

NH

N

N

-30.00 436.54 5.86 7.377

25.  ZINC09144730 

Cl

HO

OO

O

N

S

O

O

-25.76 437.90 2.65 7.257

26.  ZINC04923168 
HO

OO

O

N

S

O

O

-25.91 417.48 2.32 7.118

27.  ZINC01422371 
N

N

O N

NH

O

SN

HN
N

-22.04 291.29 0.94 7.014

28.  ZINC03348013 

O

OH

OH

O

O

O

Cl

NO2

-33.94 393.73 2.79 6.920

29.  ZINC04148781 

O

O

S

N

H
N

OH

O
-20.98 396.47 4.12 6.873
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Table 3 (continued)

30.  ZINC04059796 

NO

O

O2N

O
-21.86 414.50 2.89 6.858

31.  ZINC00070699 
N

S

N
H

OH O

OH -29.02 340.40 4.37 6.798

32.  ZINC09156838 

O

N

NH

S

O

OH

OH

-23.71 330.36 3.00 6.645

33.  ZINC02616424 N
H

O

N
H

O

S

N
N

H
N

O
Br

-23.54 442.34 3.07 6.622

34.  ZINC05225957 

O

O

O

S

HN

N

N

Cl

O

O

O

-34.08 508.00 4.80 6.515

35.  ZINC05620766 

N
N

H
N S

N

NN

N
H

NH2

-22.41 314.38 0.67 6.505

36.  ZINC04059683 

NO

O

O2N

O -21.00 428.53 3.34 6.500

37.  ZINC09373218 
N

H
N

S

O

HN

S

N

Cl

-24.14 465.00 3.38 6.372

38.  ZINC00612918 
N

N

S

N
H

OH O

OH -29.21 313.34 2.36 6.344

39.  ZINC00129993 N

HO

O

H
N

N

O

O

-28.23 285.26 0.27 6.204
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activity. Thus based on the findings derived from the
developed GA-MLR model, the biological activity of 59
selected hits was predicted. As expected, the predicted
activity of almost half of the virtual screening hits, i.e.,
47.4% was higher than the reported experimental activity
of highest active Type II dehydroquinase inhibitor (-logKi

of 7.27 for 3-nitrophenyl derivative of quinic acid,
(compound 28 in Table 1)). The predicted activity of
30.5% of the virtual screening hits was in moderate range,
i.e., 7.27< pki >6.00. The virtual screening hits with
predicted activity in higher and moderate range were then
subjected to visual inspection for final selection of
molecular starting points for the design and identification
of Type II dehydroquinase inhibitors.

Recent molecular modeling studies [19, 20, 38] and our
molecular docking studies on Type II dehydroquinase
inhibitors into the active site of M. tuberculosis Type II
dehydroquinase which is composed of Pro11, Asn12,
Leu13, Arg19, Tyr24, Asn75, Gly77, Gly78, His81,
His101, Ile102, Ser103, Arg108 and Arg112 revealed the
inhibitors are held in the active site with their quinate core
in a similar position as that adopted by crystal structure
ligands 2,3-anhydro-quinic acid and 3-hydroxyimino quinic
acid (PDB code 1H0R and 1H0S respectively). C1 ring
carboxylate is held in place by hydrogen bonding interac-
tion with two backbone amides from Ile102 and Ser103
whereas C1 hydroxyl group forms hydrogen bonding
interaction with His101 and Asn75. Molecular docking
predicted binding puts aromatic ring emerging from C3
substitutions of quinate core of highly active inhibitors into
the pocket formed by Arg108 and Arg112. Another key
binding interactions observed in case of Streptomyces
coelicolor type II dehydroquinase were edge to face
stacking interactions of aromatic ring with Tyr28 and cation

Table 3 (continued)

40.  ZINC03517387 
N

N

H
N

H2N

S

O

HN

O

HN

-23.39 298.37 0.96 6.129

41.  ZINC01141392 

O

N

N
HN

S

O

OH

OH

-30.21 357.39 3.06 6.093

42.  ZINC04494538 N
O

O

HO

O

O

HO

-21.97 361.39 2.12 6.034

Fig. 6 a & b. Binding mode of ZINC02853073 (Brown color) shown
with Compound 28 (Yellow). Dashed lines indicate hydrogen bond
between ZINC02853073 and protein
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π interaction with Arg23 (Tyr24 and Arg19 in case of M.
tuberculosis type II dehydroquinase). However we were
unable to get clear cut idea for these interactions due to lack
of these important residues in crystal structure (Tyr24 in
1H0R and Arg19 in 1H0S).

The virtual screening hits with predicted activity in
higher and moderate range were then inspected visually
considering the above mentioned interactions for M.
Tuberculosis type II dehydroquinase inhibitor binding and
a set of 42 molecules was finally selected. The structures
of the selected compounds are shown in Table 3, together
with their corresponding Flexx_Score, GA-MLR predicted
activity, molecular weight and calculated log P values. The
virtual screening process derived from this integrated
computational approach allowed the identification of
several chemotypes, not previously reported as Type II
dehydroquinase inhibitors, which includes sulfanyl tria-
zoles, sulfanyl, phenyl and pyridine thiazoles, sulfanyl
quinazoline, pyrimidines, pyridine and triazine derivatives
etc. The promising compounds share common features
like a nitrogen rich scaffold triazoles, thiazoles, quinazo-
lines, pyrimidine, pyridine, triazines etc.) and various
hydrophobic group connected to the scaffold. Among
these sulfanyl triazoles scaffold forms the major class and
could be exploited for further optimization. The predicted
binding mode of a sulfanyl triazole compound
ZINC02853073 displaying high docking score and QSAR
predicted activity is described in Fig. 6 along with the
putative bound conformation of compound 28 with M.
tuberculosis type II dehydroquinase. Like the bound
conformation of compound 28 shown in yellow color in
Fig. 6a, ZINC02853073 is anchored to the cavity by
combination of hydrogen bonding interactions with
Asn75, His81, Ile102, Ser103 and Arg108. Triazole core
nitrogen interacts via hydrogen bonds with the backbone
amides of Ile102 and Ser103 and with side chain nitrogens
of Asn75. Binding of ZINC02853073 is also stabilized by
hydrogen bonding interaction between sulfanyl oxygen
and sidechain nitrogen of His81 and between benzoic acid
ester oxygen and sidechain nitrogen of Arg108 as shown
in Fig. 6b.

Conclusions

Virtual screening of small molecule libraries has become a
standard practice in drug discovery. Here, in this study, we
emphasize the need to integrate ligand and structure-based
drug design approaches to maximize the benefits for
individual targets. The multistep strategy combines a
ligand-based (2D similarity search, 3D pharmacophore)
and structure based (molecular docking and interaction
fingerprint based scoring) virtual screening for building an

enriched library of small molecules with a QSAR for
screening against the M. tuberculosis Type II dehydroqui-
nase. The important feature of this computational approach
is the enhancement of its predictive power by incorporating
an exhaustive consensus scoring process using a rank-by-
rank strategy in order to provide a list of suitable
compounds to be considered for bioscreening. On the basis
of 2D fingerprints, a similarity search on the ZINC database
was performed using highly potent inhibitors of M.
tuberculosis Type II dehydroquinase as reference structures.
After 3D pharmacophore filtering, the resulting enriched
library was docked into the binding site to provide a list of
putative ligands ranked according to consensus scoring
using conventional Flexx scoring functions and receptor
interaction fingerprints (IFP). Additionally, known active
compounds were used for the development of ligand based
QSAR model in order to use them to predict activity of
hitherto unsynthesized molecules. The resulting ligand and
structure-based virtual screening allowed identification
several scaffolds like sulfanyl triazoles, sulfanyl, phenyl
and pyridine thiazoles, sulfanyl quinazoline, pyrimidines,
pyridine and triazine derivatives etc. that have not been
previously characterized in the scientific literature as M.
tuberculosis type II dehydroquinase inhibitors and can be
useful to a medicinal chemist or combinatorial chemist to
pick up the new molecular starting points for medicinal
chemistry optimization for the design of novel M. tubercu-
losis type II dehydroquinase inhibitors.
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